How aneuploidy affects metabolic control and causes cancer.

نویسندگان

  • D Rasnick
  • P H Duesberg
چکیده

The complexity and diversity of cancer-specific phenotypes, including de-differentiation, invasiveness, metastasis, abnormal morphology and metabolism, genetic instability and progression to malignancy, have so far eluded explanation by a simple, coherent hypothesis. However, an adaptation of Metabolic Control Analysis supports the 100-year-old hypothesis that aneuploidy, an abnormal number of chromosomes, is the cause of cancer. The results demonstrate the currently counter-intuitive principle that it is the fraction of the genome undergoing differential expression, not the magnitude of the differential expression, that controls phenotypic transformation. Transforming the robust normal phenotype into cancer requires a twofold increase in the expression of thousands of normal gene products. The massive change in gene dose produces highly non-linear (i.e. qualitative) changes in the physiology and metabolism of cells and tissues. Since aneuploidy disrupts the natural balance of mitosis proteins, it also explains the notorious genetic instability of cancer cells as a consequence of the perpetual regrouping of chromosomes. In view of this and the existence of non-cancerous aneuploidy, we propose that cancer is the phenotype of cells above a certain threshold of aneuploidy. This threshold is reached either by the gradual, stepwise increase in the level of aneuploidy as a consequence of the autocatalysed genetic instability of aneuploid cells or by tetraploidization followed by a gradual loss of chromosomes. Thus the initiation step of carcinogenesis produces aneuploidy below the threshold for cancer, and the promotion step increases the level of aneuploidy above this threshold. We conclude that aneuploidy offers a simple and coherent explanation for all the cancer-specific phenotypes. Accordingly, the gross biochemical abnormalities, abnormal cellular size and morphology, the appearance of tumour-associated antigens, the high levels of secreted proteins responsible for invasiveness and loss of contact inhibition, and even the daunting genetic instability that enables cancer cells to evade chemotherapy, are all the natural consequence of the massive over- and under-expression of proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aneuploidy causes proteotoxic stress in yeast.

Gains or losses of entire chromosomes lead to aneuploidy, a condition tolerated poorly in all eukaryotes analyzed to date. How aneuploidy affects organismal and cellular physiology is poorly understood. We found that aneuploid budding yeast cells are under proteotoxic stress. Aneuploid strains are prone to aggregation of endogenous proteins as well as of ectopically expressed hard-to-fold prote...

متن کامل

How aneuploidy may cause cancer and genetic instability.

It has been difficult to find a common cause for the many and complex phenotypes of cancer such as dedifferentiation, invasiveness, abnormal morphology, growth rate and metabolism, genetic instability, progression to malignancy, cellular heterogeneity of phenotypes and karyotypes, and clonal origin despite heterogeneity. Over 100 years ago aneuploidy, an abnormal balance of chromosomes, was pro...

متن کامل

Numerical and structural chromosome abnormalities

| Genetic instability, which includes both numerical and structural chromosomal abnormalities, is a hallmark of cancer. Whereas the structural chromosome rearrangements have received substantial attention, the role of whole-chromosome aneuploidy in cancer is much less well-understood. Here we review recent progress in understanding the roles of whole-chromosome aneuploidy in cancer, including t...

متن کامل

Causes and consequences of centrosome abnormalities in cancer.

Centrosome amplification is a hallmark of cancer. However, despite significant progress in recent years, we are still far from understanding how centrosome amplification affects tumorigenesis. Boveri's hypothesis formulated more than 100 years ago was that aneuploidy induced by centrosome amplification promoted tumorigenesis. Although the hypothesis remains appealing 100 years later, it is also...

متن کامل

Losing balance: the origin and impact of aneuploidy in cancer.

Most solid human tumours are aneuploid, that is, they contain an abnormal number of chromosomes. Paradoxically, however, aneuploidy has been reported to induce a stress response that suppresses cellular proliferation in vitro. Here, we review the progress in our understanding of the causes and effects of aneuploidy in cancer and discuss how, in specific contexts, aneuploidy can provide a growth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 340 ( Pt 3)  شماره 

صفحات  -

تاریخ انتشار 1999